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Characters of An-x Hecke algebras at roots of unity 
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Blvd. West. Montreal, Quebec H3G 1M8. Canada 
i Faculty of Malhemalical Studies. University of Southampton, Southampton SO9 5NH. 
UK 

Received 23 March 1992 

AbslmcL A Frobenius formula is presented for the characters, 4z(q). of the irreducible 
representations. nlo]. of the A,- ,  Hecke algebras H , ( q )  labelled by (m.  k)-standard 
partitions, b. where q is a primitive p th  root of unity with p = m+ k. Using this result 
Ihe characters 4;(~) ,may be expressed RS linear combinations of the characten. xA(  ), 
of representations wnbcil nre irreducibie when y is  not a root of unity. Tne appropnate 
linear combinations are found by using fusion modification rules. For 1 6 n < 5 
all Ihe remaining characten of irreducible representations of H , ( q )  are then found, 
allowing a complete tabulation 10 be made for 2 < p 6 5, along with the corresponding 
decomposition matrices. 

p .q 

The complex Hecke algebra H , L ( q ) ,  with q an arbitrary but fixed complex parameter, 
is generated by gi with i = 1,2,. . . , n - 1 subject to the relations 

g,' = ( 4 - 1 1% + 9 ( 1 4  
S i S i + l S i  = Si+lSiSitl for i = 1 , 2 , .  . . , n  - 2 (1b) 
9.9. ' 1  = 9.9. I '  for li - j l  3 2. (14 

for i = 1 , 2 , .  . . ,n  - 1 

For q = 1 these relations are exactly those appropriate to the group algebra of the 
symmetric group S,, with gi replaced by s, for i = 1 , 2 , .  . . , n - 1, where si  is the 
transposition (i, i + 1). Every permutation s in S, can be expressed as a word of 
minimal length, l ( s ) ,  in the generators s i .  Although such an expression is not unique 
a canonical form may be specified (see for example King and Wybourne 1992). Given 
such a form there exists a map h from S, to H, , (q )  such that h ( s i )  = g i  and, more 
generally, h ( s )  = si,& . . . g , , ( , ,  for any s = s i , s i 2 . .  . si , ( , ,  E S,. The set of all 
h(s) for s E S, is a basis of H,(q)  (Gyoja 1986, Jones 1987). 

As explained elsewhere (Ram 1991, King and Wybourne 1992), any trace of an 
arbitrary element, z, of H , ( q )  can be expressed as a linear sum of traces of certain 
wordsi TJ = h ( s ) ,  which are said to be minimal, in that they contain no generator 
gi more than once. Moreover, each minimal word TJ = h ( s )  can be assigned to the 
connectivity class, ( p ) ,  labelled by the partition p which specifies the conjugacy class 

If 9 is not a root of unity, the inequivalent finite-dimensional complex irreducible 
representations, n f x ) ,  of H,(q )  are labelled by the elements X of P,, the set of 

Of 5 E s,,. 
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partitions of n. Each such partition A = ( A , ,  A,, . . .) specifies a Young diagram 
FA consisting of n boxes arranged in left-adjusted rows of length A,, A,, . . .. The 
corresponding column lengths A;, A;, . . . serve to define the partition A' conjugate 
to A. The representation may be realized (Dipper and James 1986) in the form 
of a module VI') with basis labelled by the set TA of all standard Young tableau 
tr of shape A, where i = 1,2,. . . , f X .  The dimension, f', of r (x )  coincides with 
that of the ureduclble representation at the symmetric group, S,,  also labelled by A. 

A number of authors (Carter 1986, Vershik and Kerov 1989, Ram 1991, King 
and Wybourne 1990, 1992, Van der Jeugt 1991) have independently derived rather 
simple procedures or formulae for the evaluation of the characters x : ( q )  of these 
irreducible representations r(.\). In particular (King and Wybourne 1990, 1992) they 
may be obtained from the Frobenius formula (cf Macdonald 1979, p60) 

where P,, denotes the set of all partitions of n, s A ( z )  is the S-function labelled by 
A and 

a,b=O 
o+bt1=r 

As pointed out by Ram (1991) p , ( z ; q )  is nothing other than a Hall-Littlewood 
polynomial (Macdonald 1979, ~104). namely qr-' P(,,(z, q - I ) .  It reduces to a power 
sum function in the case 4 = 1. The coefficients x i ( q )  in (2) may be calculated 
from (3) and (4) by using the decomposition 

where czV are the Littlewood-Richardson coefficients (Macdonald 1979, p68). 

is a primitive pth root of unity with p >, 3. Their results are as follows. 

(i) Although H , ( q )  is not semisimple there exist semisimple quotients Hi,m,"'k'(q) 
for each pair (m ,  k )  with m, k > 1 and p = m + k. 

(U) The irreducible representations, of H:"'"' (4) may be labelled by the 
elements, A, of the set of all (m,k)-standard partitions of n defined by 
piwk) - - { A  E P," A ,  -A,, < k } ,  where P,"' = ( A  E P, 1 A; 6 m). 

of H!,m'"(q) with A E P,!m'k) there 
exists an explicit construction of the corresponding irreducible module VLA1 with 
basis labelled by T,['"!'), the set of (m, k)-standard tableaux of shape A. 

Wenzl (1988) and independently Kerov (1989), have investigated H , ( q )  when q 

I^ ,.I 

(iii) For each irreducible representation 
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As noted above the ring of symmetric functions plays a key role in the rep- 
resentation theory of the symmetric groups and H , ( q )  when q is not a root Of 
unity. The generalization appropriate to the case where q is a root of unity is as 

be the ideal generated by Is,,(+) I p1 - p,,, = k + 1 , p  E Pm = u,Pz]. Define 
follows (Goodman and Wend 1990). Let A" denote Z[zl,. . . , z,] S-,  and 1 I m - k )  

I\(m.k) = Am/I("tk)  and 

SA(.) = SA(.) + I [ms' ;J.  (6) 

Just as {sA(z)  1 X E P"} is a Z-basis for Am, so {SA(.) 1 X E P('"jk) = U,Pi"'k)} 
is a &basis for The coefficients in the decomposition 

are generalized Littlewood-Richardson coefficients; their properties have been inves- 
tigated by Goodman and Wenzl (1990). They show that reduction modulo 
may be accomplished through the  action of an affine reflection group W .  This group 
acts on Rm and is generated by S, acting by permutation of coordinates and the 
transiarion v u v + ( m + k , O  . . .  O . - i m + ~ j j .  Tie reduction tnenhas the form 

if w .  X = X for some w E W with C ( W )  = - I  

if w .  X = CT for some 20 E W and U E (8)  
{ O  r(w)S,(zj 

= 

where w . A  = w ( X + p ) - p  with p = ( m -  I ,  m - 2 , .  . . ,1,0) and we have identified 
an element X E Pm with the vector ( A , ,  . . . ,A,,,) in R". 

The coefficients dEU are nothing other than the fusion coelticients that arise 
in conformal field theory (Verlinde 1988, Goodman and Nakanishi 1991). They 
may be evaluated in terms of Littlewood-Richardson coefficients using (5) and the 
modification procedure for reducing mod l ~ ' n ~ k l  (Goodman and Wend 1990, see also 
JSac 1989, Walton 1990, Cummins 1990) to give 

where the coefficients 6; E {O,l , - I} ,  determined directly from (S), govern the 
fusion modification rule 

i A ( Z )  = r ; i u ( z )  (10) 

with ,A E P" and U E P[71L.k ) .  This rule is cxemplified in table 1 for all X E P," 
with 1 < n < 5 and 2 < m+ k < 5. 

It is shown in Cummins and King (1992) that the Frobenius formula, analogous 
to (2): for the characters 4;(q)  of the irreducible representations of H,!%".)(q) 

with U E Pi"'';) takes the form 



displayed with each row and column labelled by {A)  and (m,k). respectively. 

{A) \ 
( m , k ) ( f , l )  ( 2 , 0 ) ( 1 , 2 )  ( 2 , l )  ( 3 , 0 ) ( 1 , 3 )  ( 2 , 2 )  ( 3 , 1 )  ( 4 , 0 ) ( 1 , 4 )  ( 2 , 3 )  (3,Z) ( 4 , 1 )  ( 5 , O )  

11) PI 111 111 111 111 111 111 Ill 111 (11 

U) 121 -1121 121 121 (21 121 121 121 
U’} [ I2 ]  11’1 [I2] 117 [121 [I2] [I2] 

{3) 131 [31 -1211 1i31 131 131 131 
P I )  ~ 1 1  -1131 1211 P I 1  1211 
0 3 )  1131 1131 1131 1131 

is:; -[pj ,011 -L‘‘-, [i‘] 
P’) 12’1 lZZ1 12‘1 12’1 12lI 
W 2 )  [21*] -1141 1z121 
ti4] 11‘1 11‘1 

{41) -1321 1411 -13121 pi31 -[15] 

{32) 1321 1321 -12’11 [321 
{312) p i 2 1  -[2131 [PI 
P21) [221)  12z11 w3) [213] -[IS] 

{i5) [I”] 

141 -1311 121~1 - 1 1 ~ 1  141 
[S i ]  ,*.> rn .21  

{4) 141 [Z21 NI -12’1 

{ 5 }  [51 151 151-1321 151 -1411 [312] -[Z13] [I5] 

with e ;  E {O, 1, -1) as in (9) above (we set €7 = 0 if A; > m). 
For example the character table for H 3 ( q )  in the generic case, for which q is not 

8 ‘E! nf .!?ig, !&?PE the fLm? (.U,;& lx! YybOOr!?e 1994 1992) 

(19 (21) ( 3 )  

{31 1 rl 

{I3} 
{21) ( ; 4 ; q  ;) 

where the rows giving xi(q) are labelled by { A )  and the columns are labelled by the 
connectivity classes ( p ) .  

Now turning to the degenerate case Cor which q2 + q + 1 = 0 and taking m = 1 
and IC = 2, the only (I,2)-standard partition of 3 is (3). From (12), since e: = 1, 
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Table 2. lmducible characten m:(g), of H , ( q )  with p a primitive pth mot of unity 
for 1 < n < 5 and 2 < p < 5. Columns are labelled by the subscripls appropriate to 
minimal words g;,g;>, . . . in the c l a s  p.  Rows are labelled by [p], and if  a E P,!'"'*) 
for some (m,  k) with p = m + k then the expression for +;. as a lincar combination 
of x: has been given in the form 

p = 2 9 = - 1 1 [ p ]  10 1 12 123 13 124 1234 

.:{A}. 

t 3 )  
{21} 

t4 )  

:5: 

p = 3 q = w  

[3] 1 -1 1 

[ Z I ]  2 -2 1 

141 1 - 1  1 -1 1 
[31] 2 -2 1 0 2 

IS] : -: 1 - I  1 -1 

[32] 5 -5 3 - 1  5 -3 0 
[41] 4 -4  3 -2 4 -3  1 

1 - 1  

[p] 0 1 1 2  123 13 124 1234 

(2) 
{I2) 

{21) - {3 )  
{3)  

{4) 

{22) - 14) 

( 5 )  

{32) -  (41) 

121 1 w 

1121 1 - 1  

[21] 1 - 1  1 

[3] 1 w - 1  - w  

[4] 1 w - 1 - w  1 - I - w  
[31] 3 -1+'Lw - I - 2 w  I f w  - 1 - 3 w  
[22] 1 - 1  1 -1 1 
[212] 3 - 2 + w  I - w  w I - 2 w  

[5] 1 w - I - w  1 - I - w  1 W 

[32] 1 - 1  1 - 1  I -1  1 

[ P I ]  4 - 3 + w  2 - w  - 1 + w  2 - 2 w  - 1 + 2 w  --w 

[41] 4 - 1 + 3 w  - 2 - 3 "  Z f w  - 2 - 4 w  3 + 2 w  -1 

[312] G - 3 + 3 w  -3w I f Z w  -5w 2 + 4 w  - I - &  



p = 4 q = i  

{I) 

t2)  
{I2) 
t3)  

{i3) 

{4) 

t Z 2 )  
t31) - {4) 

{212) - {31) 4- {4) 

t5) 

t32) - t 5 )  

{2'1) - 132) + 15) 

where the rows giving 4;(q) have been labelled by [U]. 

have, for example 
Alternatively it is possible to use (11) directly along with (lo), in which case we 

P 2 1 ( q )  = ( q i 2  - i 1 1 ) S l  = @ 3 +  ( -1  + di,, - i l .  

= ( q i &  = f& n10d I(',2' 

= (-i l2)sl  = -i?l mod I"*' '. 

[PI 0 1 12 123 1 3  124 1234 

111 1 

[I21 1 -1 

(31 1 i - 1  

[21] 2 - I + i  - i  
[IS] 1 -1  1 

[4] 1 i -1 - I  -1 

[Z2] 2 - l + i  -i 0 0 
[Zl'] 1 -1 1 - 1  1 

[5] 1 i - 1  -, -1 - 8  1 

[32] 4 - 2 +  2i  -2i 1 + i  -21 I + i  - 1  

[312] 6 - 3 +  3 i  -2i 1 + i  -41 2+?1 - 1  

[Z21]  1 - 1  1 -1 1 -1 1 

12i314 - 3 + i  2 - i  - ~ + i  2 - 2 i  -1  + 2i - 1  

[2] 1 i 

[31] 2 - l + i  - - 1  ' I + i  -21 

1411 4 - 1 + 3 i  - 2 - i  1 - i  - 2 - 2 i  2-1 1 
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The coefficients of S ,  give the required characters. They coincide, as they must, with 
the entries in the second column of the two character tables given above. 

It should be stressed that for H , ( q )  with q a primitive pth root of unity, the 
above analysis only yields the characters of those irreducible representations, 7q4, 
which are labelled by partitions U of n with U (m,k)-standard for some m and k 
such that p = m + k. In general these representations form a proper subset of the 
set of all the irreducible representations, T,,,,. These may be labelled by all partitions 
p of n with p p-regular (Dipper and Janik's 1986), in the sense that no part pi Of 
p is repeated more than p - 1 times. It so happens that for n = 3 and p = 3 the 
p-regular set coincides with the union of the (1,2)  and (2,l)-standard sets. This is 
no longer the case for n = 4 and p = 3, for example. 

In the cases we have discussed for which U is (m,  k)-standard for some m and 
k the representation ii{*) is, in general, indecomposable but reducible. The module 
V(-) contains an irreducible quotient module V["I which affords a realization of the 
irreducible representation rrIu1 of H , ( q ) .  The basis of Vf-1 is provided by a subset 
of the set Tu of standard Young tableaux of shape U .  This subset Timvk) of Tu 
is provided by those standard tableaux whose sequence of shapes obtained through 
the successive removal of the entries n,  n - 1,. . . , 1 define partitions which are all 
(m,  k)-standard (Kerov 1989, Wend 1989, Goodman and Wenzl 1990). 

For example, in the  case n = 3 and U = (21)  the two standard tableaux 

define a basis, U$:, and ut;:, of V("). Correspondingly, for p = 3, the representation 
matrices take the  form (Kmg and Wybourne 1992) 

where use has been made of the identity 1 + q + q2 = 0 in passing from the  generic 
case to the case cor which q3 = i. 

The partition U = (21) is (?. 1)-standard and t:' E Ti;"), however t;' 4 'I$"). 
It follows that there should exist a 1-dimensional irreducible representation qzl1. 
This is confirmed by noting that there exists a submodule spanned by ut:! + U,:,, as 
can be seen by inspection of the above matrices, each of whose row sums is q. The 
irreducible quotient module V["] is then recovered by imposing the identity 

ull, = -vtl, or equivalently p-p. 
It follows that 

"jzlj(" = r.. . I n  = ( -1  1 31, ~ " [ 1 1 ] \ " ? '  ~ \ I .  

More generally, for each p-regular partition p ,  the recovery of V["] from V { N )  
also involves forming the quotient with a submodule. The difficulty is that in cases for 
which p is not (m ,  k)-standard for any in and k it is not even known which subset of 
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Table 3. Decomposition matrices. b i  of H , ( q )  with q a primitive pth mot of unity for 
1 < n < 5 and 2 < p < 5.  The coefficients. defined by x: (q)  = b*+"( ) for 
A E P, and p E P" with p p-regular. are displayed in the form of a matm whose 
rows and columns arc labelled by { A )  and [p], respectively, along with the dimensions 

et. P q  

of = ( A )  and =[,.I 

p = 2 [4] [31] & 

1 

1 

1 1  

1 1 

I I  4 1 4 4 6 1  

[5] [32] [2'1] [41] [213] [31: 

1 
1 1  

1 1  
1 

1 

1 
1 
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T,, may be used to label an appropriate basis of the irreducible representation VL”]. 
Nonetheless for small n and p it is possible to determine all possible submodules and 
corresponding quotients of the modules Vl’) for all partitions X of n. The process 
may be carried out by hand using the matrices n(’) tabulated previously (King and 
Wybourne 1992). 

for all p-regular partitions 
/I but also a complete determination of the decomposition matrices whose elements 
b t  give the multiplicity of occurrence of T ~ , , ~  as an irreducible constituent of n{’). 
In addition the results lead to a complete determination of the irreducible characters 
4;(q) for all p-regular partitions p. These irreducible characters are displayed in 
table 2 for all p E P,, with 1 < 71 < 5 and 2 < p < 5. The corresponding 
decomposition matrices are given in tables 3 for n < p. They conform with the block 
structure theorem established by Dipper and James (1987), and for p = 2 and 3 are 
entirely consistent with the much more extensive tabulation of James (1990). 

The outcome is not only an explicit realization of rr[ 4 
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