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Characters of A,,_, Hecke algebras at roots of unity
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t Faculty of Mathematical Studies, University of Southampton, Southampton SO9 SNH,
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Abstract, A Frobenius formula is presented for the characters, ¢3(g), of the irreducible
representations, mg), of the A, 1 Hecke algebras (g} labelled by (m, k)-standard
partitions, a, where g is a primitive pth root of unity with p = m+ k. Using this result
the characters ¢3{g) may be expressed as linear combinations of the characters, x:(q),
of representations which are irreducibie when ¢ is not a root of unity. The appropriaie
linear combinations are found by using fusion modification rules. For 1 € n ¢ 3
all the remaining characters of irreducible representations of Hn(g) are then found,
allowing a complete tabulation to be made for 2 £ p < 5, along with the corresponding
decomposition matrices.

The complex Hecke algebra ', (¢), with ¢ an arbitrary but fixed complex parameter,

is generated by g; with ¢ = 1,2,...,n — 1 subject to the relations
@ =(g~1)g; +q for i=1,2,...,n~1 (1a)
gigi+lgi=gi+lgfgi+l for 2‘:],2,..-,”—2 (1b)
g'.gj = gJ.gi for |t——_7| = 2, (1‘7)

For g == 1 these relations are exactly those appropriate to the group algebra of the
symmetric group S, with g, replaced by s; for z = 1,2,...,n — 1, where s; is the
transposition (7,7 + 1). Every permutation s in S can be expressed as a word of
minimal length, {{s), in the generators s,. Although such an expression is not unique
a canonical form may be specified (see for example King and Wybourne 1992). Given
such a form there exists a map A from S, to H,(q) such that A(s;) = g; and, more
generally, h(s) = g;,9:,---94,,, forany s = s; s, ...s;, €5, The set of all
h{(s) for s € S, is a basis of H_(q) (Gyoja 1986, Jones 1987).

As explained elsewhere (Ram 1991, King and Wybourne 1992), any trace of an
arbitrary element, x, of H_(q) can be expressed as a linear sum of traces of certain
words, » = h(s), which are said to be minimal, in that they contain no generator
g; more than once. Moreover, each minimal word v = h(s) can be assigned to the
connectivity class, (p), labelled by the partition p which specifies the conjugacy class
ofses,.

If ¢ is not a root of unity, the inequivalent finite-dimensional complex irreducible

representations, m,,, of H,(q) are labelled by the elements A of F,, the set of
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partitions of n. Each such partition A = (A, A,,...) specifies a Young diagram
F* consisting of n boxes arranged in left-adjusted rows of length X, X,,.... The
corresponding column lengths A%, X,, ... serve to define the partition A’ conjugate
to A. The representation y,, may be realized (Dipper and James 1986) in the form

of a module V{*} with basis labelled by the set T, of all standard Young tableaux
t} of shape X, where i = 1,2,..., f. The dimension, f*, of =, coincides with
that of the irreducible représentation of the symmetric group, S, , also labelled by A.

A number of authors (Carter 1986, Vershik and Kerov 1989, Ram 1991, King
and Wybourne 1990, 1992, Van der Jeugt 1991) have independently derived rather
simple procedures or formulae for the evaluation of the characters xg(q) of these
irreducible representations w(,,. In particular (King and Wybourne 1990, 1992) they
may be obtained from the Frobenius formula (cf Macdonald 1979, p60)

pAzi) = 3 xh(@)sy(z) @

MEP,

where F, denotes the set of all partitions of n, s,(x) is the S-function labelled by
A and

plziq) =p, (2:9) p,(zq) ... (3)
with
r—1 .
PA®;q) = Z (1) 4% s(a 1,10 (2)- 4
a,b=0
a+bdl=r

As pointed out by Ram (1991) p.(x;¢) is nothing other than a Hall-Lirtlewood
polynomial (Macdonald 1979, p104), namely g"~! P,y(x,¢™"). It reduces to a power

sum function in the case ¢ = 1. The coefficients XQ( q) in (2) may be calculated
from (3) and (4} by using the decomposition

s (2)s, () = 7,8, (x) (5)

where ¢/, are the Littlewood-Richardson coefficients (Macdonald 1979, p68).
Wenzl (1988) and independently Kerov (1989), have investigated H, (g) when g
is a primitive pth root of unity with p > 3. Their results are as follows.

(i) Although H_(q) is not semisimple there exist semisimple quotients Hﬁ.’"‘k)(q)
for each pair (m,k) withm,k21and p=m+ k.

(i) The irreducible representations, =y}, of H '}f""")(q) may be labelled by the
elements, A, of the set of all (wn,k)-standard partitions of n defined by
P{™®) (N g Py X, - A, < k), where P™ = {X € P, | A, ¢ m).

(i) For each irreducible representation my; of H M (g) with X g P™*®) there
exists an explicit construction of the corresponding irreducible module VI with
basis labelled by Tim‘* } the set of (m, k)-standard tableaux of shape \.
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As noted above the ring of symmetric functions plays a key role in the rep-
resentation theory of the symmetric groups and H,(g) when g is not a root of
unity. The generalization appropriate to the case where ¢ is a root of unity is as
follows (Goodman and Wenzl 1990). Let A™ denote Z[z,, ..., z,,]5", and I(™®
be the ideal generated by {s,(z) | ) — p,,, = k+ 1,4 € P™ = U, P7}. Define
AUmEY = A™ f [(mk) apd

8y(2) = sy(z) + 1(™H), (6)

Justas {s,(x) | A € P™} is a Z-basis for A™, 50 {3,(2) | A € Pk =y, P{™*)}
is a Z-basis for A(™*}, The coefficients in the decomposition

s x)s(z)= D d%,3,(2) Q)

agePlm.k}

are generalized Littlewood-Richardson coefficients; their properties have been inves-
tigated by Goodman and Wenzl (1990). They show that reduction modulo 1(™¥)
may be accomplished through the action of an affine reflection group W. This group
acts on R™ and is generated by &,  acting by permutation of coordinates and the
transiation v — v+ (m + k,5...0.—{m + &}). The reduction then has the form

N 0 if w- A= Aforsome we W with ¢(w) = -1
SA(.'I?) - (8)

e(w)d, () if w-\=o for some we W and o € P{™"

where w- A = w(d+p)—pwithp={(m-1,m-2,...,1,0) and we have identified
an element A € P™ with the vector (A,..., A ) in R™,

The coeflicients df, are nothing other than the fusion coefficients that arise
in conformal field theory (Verlinde 1988, Goodman and Nakanishi 1991). They
may be evaluated in terms of Littlewood-Richardson coefficients using (5) and the
modification procedure for reducing mod /0™%) (Goodman and Wenzl 1990, see also
Kac 1989, Walton 1990, Cummins 1990) to give

g, = Y el ©)

Agpm

where the coefficients ¢ € {0,1,—1}, determined directly from (8), govern the
fusion modification rule

§.(z) = €73, (x) ' (10)

with A € P™ and ¢ € P™ %) This rule is cxemplified in table 1 for all A € pPm
withlgngsand2gm+ k<o
It is shown in Cummins and King (1992) that the Frobenius formula, analogous

to (2), for the characters ¢7(q) of the irreducible representations ., of H&""“(q)
with o ¢ P{™*) takes the form

Plmia)= Y. 5(q)5.(x) (11)

o€ P’(lm.k)
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Table 1. Fusion modification rules: dx(z} = €¢{3qs(z) for A € Py and 0 € Pr(,m'k)
with 1 £ n €5 2<p=m+ kg5 m21and k2 0. The expression ¢{[a] is
displayed with each row and column labelled by {A} and (m, k), respectively.

(0
(m, k)j(1,1) (2,0)](1,2) (2,1) (3,0)(1,3) (2,2) (3,1)(4,0)(1,4) (2,3) (3,2} (4,1)(5,0)
IR n o b [ [ W w [y
2y | 21— 2 (2 CEE

(12} [17] 17 07 (17 p 17 02
Gy | Bl 3] ~121] 7] (3] B (3]

(21} [21] -(17] [21] 21] (2]

(33} L] (19 ] (19
SRR EES (4] -[31] (207 —[14]] [4]

(31) ~{2?] [s1] -[217} (1] (31}

(2%) [27) [27] [2%] 27 [

(217} (217] -[14) (217)

(1) [1°] 14

53 | Dl [5] (] -[s2] [2%) (5] -l41) [317] ~21%] [17]
(a1 -[32] [41) —[317]  [21°] ~[2%]
{32} [32] [32] —[221] [32}

(312) [312] ~[213]  [19]
(2°1) [221) [221]

(215} [21%) ~[1%]
{1°} [1%]

where p(z;q) = p,(z;q) + /™% with p,(z;q) defined by (3) and (4), but now
x = (xz;,%9,...,%,,). This is a generalization of a result due to Kerov (1989)
corresponding to the particular specialization = (1,¢q,¢%,...,g™™").

The generalization offered by (11} allows the characters ¢9(q) to be evaluated in
terms of the characters x(g) using the modification rules for reducing mod I(m:¥),
These rules imply that

AOEDMGEAC) (12)

AEPn

with € € {0,1,—1} as in (9) above (we set € = 0 if A] > m).
For example the character table for H;(g) in the generic case, for which ¢ is not

1 ront nf nnitvy talene the foorm fIOna and Wehonrne 199N 199N
a ool O unny, 1a«Les e iorm VNG ang WYD0UIrne (Y, 1254

(1% (21)  (3)

{3} [ 1 g ¢
{21} 2 —-l14¢qg —-q
{1*} \ 1 -1 1

where the rows giving x}(g) are labelled by {A}) aud the columns are labelled by the
connectivity classes (p).

Now turning to the degenerate case for which ¢* + g+ 1 = 0 and taking m =1
and & = 2, the only (1, 2)-standard partition of 3 is (3). From (12), since €3 = 1,
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Table 2. Irreducible characters ¢4(g), of Hn(¢) with ¢ a primitive pth root of unity
for 1 £ ng5and 2 p< 5. Columns are labelled by the subscripts appropriate to
minimal words g;, g;,, - - in the class p. Rows are labelled by [u], and if p € P,(‘m’k)
for some {m, k) with p = m + k then the expression for ¢4, as a linear combination
of xj has been given in the form 3_,.p €5{A}.

p=2g=-~1{[y] {0 1 12 123 13 124 1234

{1} |t

{2} (2] |1 -1

{3} 3 1t - 1

{21} [21) |2 -2 1

{4} 4] |1 -1 1 -1 1
[31] |2 -2 1 0 2

{5} (5 11 -1 H -1 H =1 1
[32] [5 -5 3 -1 5 -3 o
[41] |4 -4 3 -2 4 -3 1

p=3g=w {[p] |0 1 12 123 13 124 1234

{1} (] 1

{2} [2] |1 w

{17} (2] 1 -

{3} 3] |1 w -t-w

{21} - {3} [f21] |1 -1 1

{4} 4] 1 w -1 -w 1 -1-w
[31] {3 -1 4+2w -1 -2w 14w -1-3w

{22} - {4} [[22) 1 -1 1 -1 1
[21%](3 =24w 1-w w 1-2w

{5} [5] |1 w -1-w 1 -l1-w 1 w
[41] |4 =14+ 3w =2 -3w 24w =-2-4w 342w -1

{32} - {41} |{[32] |1 -1 1 -1 1 -1 1
[31%]|6 -3 4+3w -3w 1+2w -5w 244w =-1-w
[221] |4 34w 2-w -l4w 2-2w —-14+2w -w

€31 =0 and €}, = 0, we have

Combining these results, and using ¢ + ¢ + 1 = 0 where appropriate, gives

(1%) (21) (3

B {1 ¢ —1—q)
213\ 1 -1 1
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Table 2. (continued)

p=4g=i [}l [0 1 12 123 13 124 1234

{1} n

{2} [2] |1 i

{1%} nrnpn -1

{3} {3) i -1

{21} {21] |2 -1+ —i

1%} 13 -1 1

{4} [4] 1 i -1 - -1

{31} - {4} [31) |2 -1+ —i 1+ ~21

{22} [22) |2 -1+ —i 0 0

{212} - {31} + {4}{[21%}|1 -1 1 -1 1

{8} 8 [+ 4 -1 —i -1 -i 1
[41] |4 ~143¢ -2-¢ 1-i -2-2 2-1 i

{32} - {5} [32] |4 =2+ 2¢ ~2i 1+ -2i 1+ -1
{31°]{6 -3 +3: ~2: 1+ —41 2426 -1

{221} - {32} + {5}|[221][3 -1 1 -1 1 -1 1
[213]14 -3+4+4& 2-i -14i 2-2i —1+2i —i

p=5¢g=¢ el [0 1 12 123 13 124 1234

{1} f |t

{2 2 <

{17 1?7 |1 -1

{3} Bl [+ ¢ ¢?

{21} [21] |2 -1 4¢ -

{17} 1 -1 1

{4} 4 11 < ¢* ¢ ¢?

{31} [31) |3 —142¢ -¢+¢*  -~¢¥  —~u0+¢?

{2%} (2% |2 -14¢ ¢ 0 1+ ¢?

{217} [21%]|3 ~24+¢ 1-¢ ¢ 1-2¢

{14} 1] 1 =1 1 -1 1

{5} [8] [t ¢ ¢? ¢ ¢? ¢? ¢t

{41} - {8} [41] 3 ~1+2¢ ¢+ ¢ ¢ -2+ =2¢2 14 ¢+ ¢

{32} [32] |5 -2+3¢ -2¢+¢* ~¢% 1-2¢+2¢2 ¢~¢* 4+ 0

{317} — {41} + {5}|[31?][3 -24¢ 1-¢ ¢ 1-2¢ 2¢ -1=¢

{221} [221][5 -3 +2¢ 1-2¢ ¢ 2-204+¢F -1+¢-¢? 0

{213} - {31%} 211 -1 1 -1 1 -1 1

+{41} - {5}

where the rows giving ¢7(q) have been labelled by [o].
Alternatively it is possible to use (11) directly along with (10), in which case we

have, for example

P(q) = (g8, —513)s; = qé3+ (-1 4 q)8y = 815

= (g4,)8; = q3, mod I

i,2)

= (—8,2)s; = —&,, mod [*").
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The coefficients of §, give the required characters. They coincide, as they must, with
the entries in the second column of the two character tables given above.

It should be stressed that for H,_(q) with g a primitive pth root of unity, the
above analysis only yields the characters of those irreducible representations, 7,
which are labelled by partitions o of n with o (m, k)-standard for some m and k
such that p = m + k. In general these representations form a proper subset of the
set of all the irreducible representations, n;,;. These may be labelled by all partitions
u of n with p p-regular (Dipper and James 1986), in the sense that no part u; of
i is repeated more than p — 1 times. It so happens that for » = 3 and p = 3 the
p-regular set coincides with the union of the (1,2) and (2, 1)-standard sets. This is
no longer the case for n = 4 and p = 3, for example.

In the cases we have discussed for which ¢ is {m, k)-standard for some m and
k the representation w, is, in general, indecomposable but reducible. The module

V{e} contains an irreducible quotient module VIl which affords a realization of the
irreducible representation m,; of H,(g). The basis of VI°] is provided by a subset

of the set T, of standard Young tableaux of shape o. This subset TE™®) of T,
is provided by those standard tableaux whose sequence of shapes obtained through
the successive removal of the entries n,n — 1,...,1 define partitions which are all
{m, k)-standard (Kerov 1989, Wenzl 1989, Goodman and Wenzl 1990).

For example, in the case n = 3 and o = (21) the two standard tableaux

13 = ;3] and 13' =

1]2}

define a basis, v,z and vy, of V{21 Correspondingly, for p = 3, the representation
matrices take the form (King and Wybourne 1992)

-1 14¢g _ {0 q
”{21}(91)"_-(0 7 ) and Tf{zl}(gz)—(l —1+q)

where use has been made of the identity 1 + ¢ -+ ¢* = 0 in passing from the generic
case to the case for which ¢° = 1.

The partition o = (21) is (2, 1)-standard and ¢}! € Téf'”, however 3! ¢ T.ﬁff’”.
It follows that there should exist a 1-dimensional irreducible representation mpyy).
This is confirmed by noting that there exists a submodule spanned by v,;1 + v;a1, as
can be seen by inspection of the above matrices, each of whose row sums is g. The
irreducible quotient module V(2! is then recovered by imposing the identity

Vgt = —VUm OF equivalently : - ; 2].

L

It follows that

P P RN
AT Haipavzs

I

{(=1).
1 kS ;
More generally, for each p-regular partition g, the recovery of V¥l from v {x}
also involves forming the quotient with a submodule. The difficulty is that in cases for
which  is not {m, k)-standard for any m and k it is not even known which subset of
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Table 3. Decomposition matrices, b} of H.(g) with ¢ a primitive pth root of unity for
1< ng5and 2 p g5 The coeflicients, defined by x)(q) = T, bgh(q) for
A€ P, and u € P, with u p-regular, are displayed in the form of a matrix whose
rows and columns are labelled by {A} and [g], respectively, along with the dimensions
of TI'{,\} and ‘R‘[#].
1 5 4
p =2 j[5] [32] [41]
12 1 {5} |1
p =2 |[4] [31] 5 {32} 1
I o2 1 {4} |1 6 {313} |1 1
1 p =2 |[3] [21] 3 {31} |1 1 5 {221) 1
p=2 2] 1 {3} |1 2 {22} 1 1 {15} |1
1 {2} |1 1 {13} |1 3{21?7} |1 1 4 {41} 1
1 {1%} |1 2 {21} 1 1 {1*} [1 4 {213} 1
1 4 4 1 6
p =3 |[5] [2°1] [41] [32] [317]
] 1 3 3 1 {5} 1
p =3 |[4) [2°] [31][21?] 5{221} [1 1
11 1 {4} |1 4 {21%) 1
p=3 |[8] [21] 2 {22} |1 1 4 {41} 1
1 {3} |1 I {14} 1 5 {32} 1 1
2 {21} |1 1 3 {31} 1 1 {1%} 1
1 {13} 1 3 {212} 1 6 {31%) 1
1 4 1 4 4 6
p =4 |[5] (32} [221] [41] [22¥] [317]
1 2 1 2 1 {3} |1
p=4 |[4] [31] [21%] [2?] 5 {32} |1 1
1 {4} |1 5 {221} IS |
3 {31} [1 1 1 {1%} 1
3 {217} 1 1 4 {41} 1
1 {1*} 1 4 {213} 1
2 {2%} 1 8 {317} 1
1 3 3 1 5 5
p =5 [[5] [41) [317] [21%] [32] [221]
1 {5} |1
4 {41} |1 1
6 {312} 1 1
4 {215} 1 i
1 {18} 1
5 {32} 1
5 {221} 1
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T, may be used to label an appropriate basis of the irreducible representation V14,
Nonetheless for small » and p it is possible to determine all possible submodules and
corresponding quotients of the modules V{*} for all partitions A of n. The process
may be carried out by hand using the matrices = ,, tabulated previously (King and
Wybourne 1992).

The outcome is not only an explicit realization of =y, for all p-regular partitions
#+ but also a complete determination of the decomposition matrices whose elements
b4 give the multiplicity of occurrence of 7y, as an irreducible constituent of 7.
In addition the results lead to a complete determination of the irreducible characters
@4 (q) for all p-regular partitions y. These irreducible characters are displayed in
table 2 for all p € P, with 1 £ n € 5 and 2 € p € 5. The corresponding
decomposition matrices are given in tables 3 for n < p. They conform with the block
structure theorem established by Dipper and James (1987), and for p = 2 and 3 are
entirely consistent with the much more extensive tabulation of James (1990).
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